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Abstract. The paper deals with the ground state structure of the partly filled l-shell of a fermionic gas
of atoms of spin s in a spherically symmetric spin independent trap potential. At particle numbers N =
n(2s + 1), n = 1, 2, . . . , 2l + 1 the basic building blocks are clusters consisting of (2s + 1) atoms, whose
wave functions are completely symmetric and antisymmetric in space and spin variables, respectively. The
creation operator of a cluster is constructed and applied also to create multi cluster states. Ground state
energy expressions are derived for the n-cluster states at different l, s values and interpreted in simple
terms.

PACS. 05.30.Fk Fermion systems and electron gas – 31.15.Hz Group theory – 21.60.Cs Shell model –
74.20.Fg BCS theory and its development

1 Introduction

The many body problem as applied to finite systems has
a long history in atomic and nuclear physics [1–4]. One of
the central problems has been the nature of the ground
state in case of a partially filled shell.

When we consider atoms (a Bose or Fermi gas at zero
temperature) in an external potential the possible behav-
iors are quite rich. One can assume that the collision be-
tween atoms does not excite internal degrees of freedom
and the atoms can be regarded as structureless objects
(particles in the following) whose spins are fixed being in
a definite hyperfine state. The external potential can be
supplied by a magnetic or optical trap [5]. In the past few
years a very intensive research has been done in case of
Bose-particles both theoretically and experimentally in a
variety of such systems. Fermion systems along these lines
have been less studied until recently, but important results
are already available and one can be sure that rapid de-
velopment will continue in the future. In particular the
achievement and study of the superfluid state has become
one of the frontiers in physics (see for reviews [6–9], which
contain references to earlier works).
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dapest, Hungary.

In this paper we treat the open shells of trapped
fermionic systems. The external potential which includes
the trap potential and the average field of the closed shells
will be assumed to be spherically symmetric and the in-
teraction between atoms in the partly filled shell will be
described by a spin independent δ function like attractive
pseudopotential widely used for trapped gases. We focus
on effects coming from the fact that the spin of the trapped
atoms can be larger than 1/2. Note that the atoms are in
a definite hyperfine state, whose total angular momentum
is often denoted by F . For the sake of simplicity we shall
speak about the spin of the particle and use the symbol s.
First examples when the degeneracy temperature has been
achieved are isotopes 6Li and 40K whose spins can be as
high as s = 3/2 and s = 9/2, respectively [10,11].

Attractive interaction prefers a state as symmetric as
possible in the spatial coordinates. This leads to cluster
structure of the ground state, since (2s + 1) particles can
have a completely antisymmetric spin function and con-
sequently, the ground state is completely symmetric in
spatial variables.

We concentrate on multi cluster states containing par-
ticles of numbers Nn = n(2s + 1) in the open shell, where
n = 1, 2, . . . , 2l+1 (It is similar to considering even parti-
cle numbers in case of spin 1/2). The importance of clus-
ters consisting of 2s + 1 particles has been pointed out
by us previously [12]. It has been shown that the binding
energy per particle has a local maximum at multi clus-
ter states. The cluster state is completely antisymmetric
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in spin variables and the cluster can be considered as a
generalization of the singlet Cooper pair for s > 1/2, in
other words clusters take over the role of Cooper pairs. In
the present paper we extend our previous investigations to
several directions and provide the proofs of some results
used already in [12]. It is shown that to a good approxi-
mation the open shell Hamiltonian Ĥ can be replaced by
a simplified one Ĥ0 built of the the operator of the par-
ticle number, of the quadratic Casimir operators of the
groups SU(2l + 1) and SO(2l + 1). It is pointed out that
the clusters can be conceived as interacting (Cooper) pairs
if s > 1/2, the interaction being of statistical origin. The
Hamiltonian Ĥ0 coincides with Ĥ for l = 1, 2 (These are
the special cases mainly investigated in [12]).

For the Hamiltonian Ĥ0 the multi cluster states are
explicitly given and the energy of the n-cluster state is
written as the sum of energies of the clusters proportional
to n and an “interaction term” term between the clusters
proportional to n(n−1)/2, again of statistical origin. It is
found that the second term disappears when s = 1/2. (For
s = 1/2 it was shown already by Racah and Talmi in 1952
[13] that the ground state consists of independent pairs).
It is proven that the mean values of the Hamiltonian Ĥ
agrees with the eigenvalues of Ĥ0 in multi cluster states.

Investigations of particles in an open shell has been
an important area in atomic and nuclear physics. As dis-
cussed above in the trapped gas of Fermi atoms new fea-
tures appear due to the fact that the spin of the particles
can be higher than 1/2. Comparing with the situation in
the electron shell of atoms a further important difference
is that instead of the long ranged Coulomb force between
the electrons the atom-atom interaction which has to be
considered here is short ranged, while comparing the sit-
uation with that of an open neutron shell in a nucleus an
important difference is that in our case the open shell is
an l-one (since no spin-orbit interaction is present) as con-
trasted to the j-one in the nucleus. Note, however, that
the interaction between the neutrons is often modelled by
a δ function potential.

As mentioned it is assumed that the external potential
contains besides the confining potential (which is typically
of a harmonic oscillator type) the mean field of the atoms
building the closed shells. There are two conditions then
to be fulfilled in order that the single-l shell model apply.
Firstly, the mean field due to the closed shells should be
strong enough that the possible degeneracy of the levels
of different l values be lifted considerably. Secondly, the
characteristic interaction energy of the atoms in the partly
occupied shell should be smaller than the relevant level
distance in the external potential and that the polarization
of the completed shells be negligible (frozen or inert core
approximation, often applied in the theory of the electron
shell of atoms and in the nuclear shell model to treat the
dynamics of particles in the partially filled shell [3,4,14]).
Both requirements can be satisfied simultaneously if the
strength of the interaction between the atoms is weak and
the number of the atoms in the trapped gas is sufficiently
large [15,16]. We restrict ourselves to the situation when
these conditions are met. This makes possible to exhibit

clearly and explicitly the new qualitative features showing
up when the spin of the Fermi particles is bigger than 1/2.

Though our main purpose in this paper is to enlarge
the picture we have about the dynamics of fermionic par-
ticles in a partly filled shell, a few words about the rele-
vance of the model for physically realizable situations in
case of trapped gases are in order. Obviously optical traps
are the suitable ones which allow the free rotation of the
spins. One can hope, for instance, that the procedure of
all-optical production [17] of the spin 1/2 states of 6Li
atoms can be applied to keep the spin 3/2 states of these
atoms.

The paper is organized as follows. In Section 2 the
Hamiltonian Ĥ is written in terms of irreducible tensor
operators and a simplified Hamiltonian Ĥ0 is introduced
built from the operator of particle number and from the
quadratic Casimir operators of the groups SU(2l +1) and
SO(2l + 1). Section 3 is devoted to the extensive investi-
gation of the one-cluster state. Energy eigenvalues of the
Hamiltonian Ĥ0 for cluster states generated by the cluster
creation operator are calculated in Section 4. In Section 5
it is proven that Ĥ0 and Ĥ have the same ground states
and the same ground state energies for particles of spin
1/2. In the general case s ≥ 1/2 it is shown in Section 6
that the expectation value of the Hamiltonian agrees with
the eigenvalue of Ĥ0 for cluster states. Section 7 contains
the summary and a discussion of the results. Appendix A
derives the properties of the symmetrizing operator. Ap-
pendices B and C present certain steps of proofs outlined
in the main text. Appendix D is devoted to properties of
the spectra of Ĥ which can be obtained by particle-hole
transformation.

2 Formulation

The Hamiltonian of the particles in the open shell can be
cast in the form

H =
N∑

i=1

H(1)(ri) + Hint (1)

H(1)(r) = −�
2∆

2M
+ U(r), (2)

where H(1) represents the kinetic energy of a particle and
the one-particle potential, which includes the external po-
tential and the average field of the closed shells. It is as-
sumed that U is spherically symmetric and the solutions
of the eigenvalue problem

H(1)Ψnr,l,m,s,ν = E(1)(nr, l)Ψnr,l,m,s,ν (3)

are known. The one particle normalized wavefunctions
have the usual form

Ψnr,l,m,s,ν(r, ϑ, ϕ, ς) = Rnr ,l(r)Y l
m(ϑ, ϕ)χs

ν(ς). (4)

Here ς is the discrete spin variable and χs
ν(ς) is the nor-

malized spin eigenfunction. In the model the quantum
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numbers (nr, l, s) are fixed, m and ν can take the values
m = −l,−l + 1, . . . , l and ν = −s,−s + 1, . . . , s and the
particle number N can vary between 0 and (2l+1)(2s+1).
The interaction between the particles in the partially filled
shell is given by

Hint = −λ

2

N∑

i,j=1
i�=j

δ(ri − rj), λ > 0 (5)

corresponding to a spin independent s-wave scattering
with negative scattering length. Our aim is to diagonal-
ize (5) on the fixed basis (4).

Let us denote the operator which annihilates a par-
ticle with quantum numbers (nr, l, m, s, ν) by am,ν . The
Hamiltonian (5) in second quantization reads as

Ĥint ≡ gĤ = −gπ

2

∑

m1,m2
m3,m4

∑

ν1,ν2

fm1,m2;m3,m4

× a+
m1,ν1

a+
m2,ν2

am4,ν2am3,ν1 , (6)

where g is the characteristic energy

g =
λ

π

∫ ∞

0

|Rnr ,l(r)|4r2 dr, (7)

and f is

fm1,m2;m3,m4 =
∫

dΩ Y l∗
m1

(Ω)Y l∗
m2

(Ω)Y l
m3

(Ω)Y l
m4

(Ω).

(8)
f can be expressed in terms of the Wigner-3j symbols [18]

fm1,m2;m3,m4 =
[l]2

4π

2l∑

L=0

[L]
(

L l l
0 0 0

)2

(−1)(m2+m3)

×
L∑

M=−L

(
l l L

m1 −m3 −M

)(
l l L

m4 −m2 −M

)
. (9)

For notational simplicity we introduced the symbol [. . .]
defined by

[p] ≡ (2p + 1).

The dimensionless Hamiltonian Ĥ (see Eq. (6)) can be
written as

Ĥ =
[l]
8

N̂ − [l]2

8

2l∑

L=0

(
l l L
0 0 0

)2

B̂2
L, (10)

where

B̂2
L =

L∑

M=−L

(−1)L−M B̂L,M B̂L,−M . (11)

In fact, the Wigner-3j symbol in equation (10) vanishes
for L odd, thus the sum over L runs over even values of
L. The operators B̂L,M defined as

B̂L,M =
l∑

m=−l

s∑

ν=−s

(−1)l−m
√

[L]

×
(

l l L
m M − m −M

)
a+

m,νam−M,ν (12)

are spin scalars and irreducible tensor-operators with re-
spect to angular momentum [1]. They take the form for
L = 0 and L = 1

B̂0,0 =
N̂√
[l]

=
1√
[l]

l∑

m=−l

s∑

ν=−s

a+
m,νam,ν (13)

and

B̂1,0 =
√

3√
l(l + 1)[l]

L̂z,

B̂1,±1 = ∓
√

3√
2l(l + 1)[l]

L̂±, (14)

respectively. The operator B̂0,0 commutes with all the
other B̂L,M operators. The operators B̂L,M for L ≥ 1
form a Lie-group, which is isomorphic to SU(2l + 1). The
commutators are

[
B̂L,M , B̂L′,M ′

]
= −

∑

L′′,M ′′

√
[L][L′][L′′]

×
[
1 − (−1)L+L′+L′′]

(−1)M ′′
(

L L′ L′′
M M ′ −M ′′

)

×
{

L L′ L′′
l l l

}
B̂L′′,M ′′ , (15)

where {. . .} denotes the Wigner-6j symbol. Due to the
special form of the structure coefficients the operators
B̂L,M for odd L form a subgroup, which is isomorphic
to SO(2l + 1). This latter also has a subgroup SO(3) [19]
spanned by B̂1,M , M = 0,±1. The Casimir-operator of
SU(2l + 1) is

Ĉu =
2l∑

L=1

(−1)LB̂2
L (16)

and that of SO(2l + 1)

Ĉo = −
2l−1∑

L=1
L:odd

B̂2
L. (17)

The Hamiltonian Ĥ defined in equation (10) commutes
with L̂2, L̂z, Ŝ2, Ŝz and with the Casimir operator Ĉu. In
the special case l = 1, because the operator B̂2

2 = Ĉu−Ĉo,
and in case l = 2, because of the accidental coincidence

(
2 2 2
0 0 0

)2

=
(

2 2 4
0 0 0

)2

=
2
35

,

Ĥ can be expressed entirely in terms of N̂ , Ĉu and Ĉo.
For l > 2 this is not true anymore, and furthermore Ĉo

does not commute with Ĥ .
It is useful to introduce a splitting of the Hamiltonian

as follows
Ĥ = Ĥ0 + Ĥ1, (18)
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where

Ĥ0 =
[l]
8

N̂ − N̂2

8
− [l]

4(2l + 3)

(
Ĉu − Ĉo

)
, (19)

and

Ĥ1 = Ĥ−Ĥ0 = − [l]2

8

2l∑

L=2
L:even

((
l l L
0 0 0

)2

− 2
(2l + 3)[l]

)
B̂2

L.

(20)
Furthermore we will use the notations

Ĥ0|Ψ〉0 = ε|Ψ〉0, (21)

Ĥ|Ψ〉 = E|Ψ〉, (22)

Ĥ|Ψ〉 = E|Ψ〉. (23)

E(γ, N) is the intrashell energy (in units of g). The total
energy of the particles in the open shell is

E(nr, γ, N) = E(γ, N)g + E(1)(nr, l)N (24)

according to (3), where γ is the necessary set of quantum
numbers to characterize uniquely an eigenstate of Ĥ . The
parameters in Ĥ0 have been chosen so that Ĥ1 = 0 for p
and d shells and in general the average 0〈ncl|Ĥ1|ncl〉0 = 0
as will be shown in Section 6. Here |ncl〉0 refers to the
n-cluster state, i.e., to the ground state of Ĥ0 for particle
number

Nn = n(2s + 1), n = 0, 1, . . . , (2l + 1). (25)

We calculate in the next section the exact ground state
eigenvalues of Ĥ for different l, s values (l > 2, s > 1/2)
to demonstrate that the effect of Ĥ1 is small. Later we will
also show that Ĥ and Ĥ0 share the same ground states
for even particle numbers if s = 1/2.

3 Cluster states

Making a full numerical diagonalization of the Hamilto-
nian (10) is not easy. Fock-vectors have (2l + 1)(2s + 1)
slots, and in each slot there is a zero or 1 due to the
fermionic character of the problem. The dimension of the
full Hilbert-space is 2(2l+1)(2s+1). The spectra do not de-
pend on Lz and Sz, thus we can restrict ourselves to the
fermionic sectors Lz = 0, Sz = 0 (even particle numbers)
or Lz = 0, Sz = 1/2 (odd particle numbers). Conserved
operators such as Ŝ2, L̂2, N̂ and Ĉu make the numeri-
cal problem block-diagonal, but still the computer time
and storage required grows exponentially fast as soon as
we increase the open shell quantum numbers s or l. This
motivates our analytical approach besides the numerical
efforts.

In this section we give an overview of main features of
clusters. In the special case spin of 1/2 the cluster is the
well-known singlet pair which is created by

Q̂+
0,0 =

√
2
[l]

l∑

m=−l

(−1)l−ma+
m,↑a

+
−m,↓, s = 1/2 (26)

from the vacuum: Q̂+
0,0|0〉. It will be shown that this state

is an eigenstate not only of Ĥ0, but also of Ĥ with the
same eigenvalue.

In [12] we have investigated the ground state wave
function at the particle number N1 = 2s+1 in first quan-
tization. In second quantization we seek the corresponding
wave function in the form of

|1cl〉 =
∑

k

ckSm

⎛

⎝
(2s+1)∏

i=1

a+
mi,s+1−i

⎞

⎠ |0〉,

k ≡ (m1, . . . , m2s+1), (27)

with some coefficients ck to be determined from equa-
tion (22). Here the symbol Sm is an operator which sym-
metrizes the product of creation operators with respect to
the indices m1, . . . , m2s+1 (see Appendix A for the prop-
erties of this operator). The state (27) is antisymmetric in
the spin variables.

For notational simplicity let us introduce the integer
σ by

σ =
(2s + 1)

2
. (28)

In case of Ĥ0 the ground state (27) takes the form

|1cl〉0 = Sm(Q̂+σ
0,0)|0〉 (29)

(for the proof see Sect. 4). The operator Q̂+
0,0 in (29) shall

play a central role in the following analysis. It creates a
pair state from the vacuum with quantum numbers L =
S = 0 and with fixed open shell quantum numbers (l, s):

Q̂+
0,0 =

1√
[l][s]

∑

m,ν

(−1)s−ν+l−ma+
m,νa+

−m,−ν. (30)

Q̂+
0,0 is an example for a pair creation operator when the

two particles occupy time reversed states and is a gener-
alization of (26) for s ≥ 1/2. Obviously

Sm(Q̂+
0,0) = Q̂+

0,0. (31)

Since Ĥ and Ĥ0 coincide for l = 1, 2 the first example
when (29) is not an eigenstate of Ĥ occurs for l = 3,
s = 3/2. N = N1 = 4 is then the corresponding first
cluster particle number. The ground state is in the L =
Lz = S = Sz = 0 fermionic sector. In this sector there are
five orthonormal basis vectors. The matrix elements of Ĥ
on this basis are the following

Hi,j =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 − 14

11 0 0 0
0 0 − 7

2 0 0

0 0 0 − 4886
2145 − 14

3

√
2

715

0 0 0 − 14
3

√
2

715 − 35
6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The true ground state energy for N = 4 comes from
the lowest 2 × 2 block-diagonal and has the value for the
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Table 1. Ground state energies of Ĥ (upper part) and Ĥ0

(lower part) up to two decimal digits precision at the one-
cluster particle numbers N1 = (2s + 1).

s = 1/2 s = 3/2 s = 5/2 s = 7/2

l = 1 –0.75 –3.30 –7.65 –13.80
l = 2 –1.25 –4.64 –10.18 –17.86
l = 3 –1.75 –5.85 –12.32 –21.17
l = 4 –2.25 –6.99 –14.26 –24.12
l = 5 –2.75 –8.09 –16.09 —
l = 6 –3.25 –9.17 –17.83 —
l = 1 –0.75 –3.30 –7.65 –13.80
l = 2 –1.25 –4.64 –10.18 –17.86
l = 3 –1.75 –5.83 –12.25 –21.00
l = 4 –2.25 –6.95 –14.11 –23.72
l = 5 –2.75 –8.04 –15.86 —
l = 6 –3.25 –9.10 –17.55 —

ground state

E0 = −7(1657 +
√

537729)
2860

≈ −5.85038,

which is quite close to h5,5 = −35/6 ≈ −5.83333. Numer-
ically Hi,j in the same 2 × 2 block is

Hi,j ≈
( −2.27786 −0.246813
−0.246813 −5.83333

)
,

and the lowest energy state belongs to the eigenvector

vg ≈
(

0.0690865
1

)
. (32)

It is interesting to present the matrix elements of Ĉu

C(SU(7))i,j =
(

264
7 0
0 264

7

)

and that of Ĉo

C(SO(7))i,j =
(

18 0
0 0

)
.

In (32) there is a small admixture of two vectors belonging
to different eigenvalues of Ĉo and the dominant part is
provided by the eigenvector of Ĉo with eigenvalue zero.
Analyzing further this fifth vector it turns out that it is
still given by (29) with l = 3, s = 3/2. The average value
of Ĥ by this vector is equal to that of Ĥ0. Similar property
will be proven in Section 6 also for multi cluster states. It
is important to stress that the fourth vector and the true
ground state vg (32) are also symmetrized states (27).

In Table 1 we show the numerically calculated ground
state energies of Ĥ (10) and Ĥ0 (19). From the data it is
clearly seen that for l = 1, 2 or for s = 1/2 the expression
given in (29) is the exact ground state and for all the other
cases |1cl〉 ≈ |1cl〉0 is quite a good approximation. This

shows the importance of the simplified Hamiltonian Ĥ0.
The dominating contribution to the energy (lower part of
Tab. 1) can be written in the form

ε1 = −σε(2) − σ(σ − 1)
2

δ,

where ε(2) and δ are independent of the spin. Their explicit
expressions will be derived in Section 4. The first term
gives the energy of σ independent pairs while the second
term lowers this energy, indicating clearly that the cluster
wave function gives lower energy than the wave function of
independent pairs. Note that an eigenfunction of Ĥ0 exists
with the eigenvalue −σε(2) if the inequality σ ≤ 2l + 1 is
fulfilled. For spin one half particles one has only the first
term, the energy of a single pair.

4 Cluster states and ground state energies
of Ĥ0

Let us consider the states

|ncl〉0 = Q̂+n|0〉, n = 0, . . . , (2l + 1), (33)

where the operator Q̂+ is given in terms of the operator
(30) by

Q̂+ = Sm(Q̂+σ
0,0). (34)

Q̂+ creates a (2s + 1) particle state. In the following we
shall prove that |ncl〉0 is an eigenstate of the Hamiltonian
Ĥ0 (19).

We deal first with the special case s = 1/2 (σ = 1).
According to (31), (34)

Q̂+ = Q̂+
0,0, s = 1/2. (35)

and Q̂+
0,0 is given by equation (26). The procedure is that

the B̂L,M operators are moved to the vacuum when Ĉu or
Ĉo is applied to the state |ncl〉0 = Q̂+n

0,0 |0〉. One can see
using the fact [Q̂+

0,0, Q̂
+
L,M ] = 0 that

[
B̂L,M , Q̂+n

0,0

]
=

2n√
[l]

Q̂
+(n−1)
0,0 Q̂+

L,M , (36)

where

Q̂+
L,M =

√
[L]
2

(−1)M
[
1 + (−1)L

]

×
l∑

m=−l

(
l l L
m M − m −M

)
a+

m,↑a
+
M−m,↓. (37)

Note that Q̂+
L,M = 0 for L odd. Consequently, Ĉo|ncl〉0 =

0. Next step is to calculate

B̂L,−MB̂L,MQ̂+n
0,0 |0〉 =

(
4n(n − 1)

[l]
Q̂

+(n−2)
0,0 Q̂+

L,MQ̂+
L,−M

+
2n√
[l]

Q̂
+(n−1)
0,0 [B̂L,−M , Q̂+

L,M ]

)
|0〉. (38)
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Summation over L and M according to (16) and (11) can
be performed using the two identities

L∑

M=−L

(−1)M
[
B̂L,−M , Q̂+

L,M

]
=

2[L]√
[l]

Q̂+
0,0, L : even,

(39)
2l∑

L=0

L∑

M=−L

(−1)L−MQ̂+
L,MQ̂+

L,−M = − [l]
2

Q̂+2
0,0, s = 1/2.

(40)
One arrives at the result that |ncl〉0 is an eigenvector of
Ĉu and that

Ĥ0|ncl〉0 = −n(2l + 1)
4

|ncl〉0, s = 1/2, (41)

where we used (19) and that N̂ |ncl〉0 = 2n|ncl〉0.
We turn now to the general case s > 1/2. Using the

identity (80) of Appendix A one gets

[
B̂L,M , Sm(Q̂+σ

0,0 )
]

=
2σ√
[l]

Sm(Q̂+
L,MQ̂+σ−1

0,0 ), (42)

where

Q̂+
L,M =

√
[L]
[s]

l∑

m=−l

s∑

ν=−s

(−1)s−ν+M

×
(

l l L
m M − m −M

)
a+

m,νa+
M−m,−ν . (43)

Q̂+
L,M = 0 for L odd as can be easily seen. For L = M = 0

this expression agrees with (30) and for s = 1/2 goes over
to (37). Furthermore

Sm(Q̂+
L,M ) = Q̂+

L,M . (44)

Ĉo is built up from operators B̂L,M with L odd (see
Eq. (17)), but the right hand side of (42) in that case
is zero. As a result Ĉo when applied to the state given in
(33) can be moved to the vacuum, which is annihilated
by Ĉo

Ĉo|ncl〉0 = 0. (45)

As a byproduct we have the property
[
Ĉo, Q̂

+
]

= 0, (46)

i.e., the operator Q̂+ commutes with Ĉo.
To show that |ncl〉0 is an eigenvector of Ĉu in case

s > 1/2 requires more elaborate calculations. In moving
the operators B̂L,M towards the vacuum one encounters
several new objects from the commutators as anticipated
from equation (42). In deriving them one needs the prop-
erty that Sm and the operator of commutation commutes
for the operators occurring as shown in the Appendix A.

For the new objects one can use the identities (see Ap-
pendix B)

2l∑

L=0

L∑

M=−L

(−1)MSm(Q̂+
L,MQ̂+

L,−MQ̂+σ−2
0,0 ) = [l]Sm(Q̂+σ

0,0),

(47)
which is valid for σ ≥ 2 and

2l∑

L=0

L∑

M=−L

(−1)MSm(Q̂+
L,MQ̂+σ−1

0,0 )Sm(Q̂+
L,−MQ̂+σ−1

0,0 ) =

− [l]
[s]

Sm(Q̂+σ
0,0)2. (48)

As a result one has

Ĉu|ncl〉0 =
n([l] − n)

[l]
[s]([l] + [s])|ncl〉0, (49)

i.e., |ncl〉0 as given by (33) is really an eigenvector of Ĉu.
Correspondingly for Ĥ0 (19) using (45) one obtains:

Ĥ0|ncl〉0 = εn|ncl〉0, (50)

with

εn = −n(2l + 1)(2s + 1)
8(2l + 3)

[n(2s − 1) + 2l + 1 + 4s] . (51)

This expression can be cast into the form

εn = nε1 +
n(n − 1)

2
γ, (52)

where

ε1 = − (2l + 1)(2s + 1)
4(2l + 3)

(3s + l) (53)

and
γ = − (2l + 1)(2s + 1)

4(2l + 3)
(2s − 1). (54)

The first term on the right hand side of equation (52) can
be interpreted as the energy of n independent one-clusters
and the second term as a kind of cluster-cluster interaction
energy. Furthermore the energy ε1 can be rewritten as

ε1 = −σε(2) − σ(σ − 1)
2

δ, (55)

where
ε(2) =

2l + 1
4

, δ =
12

2l + 3
ε(2). (56)

They are independent of the spin. For spin one-half par-
ticles γ = 0 and the prefactor of δ in (55) is zero, which
means that the clusters consist of pairs which are inde-
pendent, as already stated.

One can raise the question what is the ratio of the in-
teraction energies in average of two pairs within the same
cluster and when they belong to two different clusters.
This ratio is equal to

δ

γ/σ2
=

3(2s + 1)
2s− 1

, s > 1. (57)

It is remarkable that this expression is l-independent. This
ratio is always bigger than one, monotonically decreasing
with increasing s.
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5 Ground state energies of spin 1/2 particles

In (41) we have shown that for s = 1/2 the state |ncl〉0
is an eigenvector of Ĥ0. Let us consider now first how Ĥ1

acts to a one cluster state. Direct calculation gives

B̂2
L|1cl〉0 =

4n[L]
[l]

|1cl〉0, s = 1/2, L : even. (58)

Substituting this into equation (20) and performing the
sum over L in (20) results in

Ĥ1Q̂
+
0,0|0〉 = 0. (59)

For multi cluster states we proceed as follows. Carrying
out the summation over L in (20) leads after some rear-
rangements to

Ĥ1|ncl〉 = − [l]
2

n(n − 1)
2l∑

L=0

(
l l L
0 0 0

)2

|µL〉, (60)

where

|µL〉 = Q̂
+(n−2)
0,0

L∑

M=−L

(−1)MQ̂+
L,MQ̂+

L,−M |0〉. (61)

Using (26) and (37) and the identity

0 =
2l∑

L=0

[L]
(

L l l
0 0 0

)2

×
L∑

M=−L

[(
l l L

m1 m2 −M

)(
l l L

m3 m4 −M

)

−(−1)(m2+m3)

(
l l L

m1 −m3 −M

)(
l l L

m4 −m2 −M

)]

(62)

we arrive at the rather long form

2l∑

L=0

(
l l L
0 0 0

)2

|µL〉 = 2Q̂
+(n−2)
0,0

∑

m1,m2
m3,m4

(−1)m1+m3

×
2l∑

L=0
L:even

[L]
(

l l L
0 0 0

)2 L∑

M=−L

(
l l L

m1 m3 −M

)

×
(

l l L
−m4 −m2 −M

)
a+

m1,↑a
+
m2,↓a

+
m3,↑a

+
m4,↓|0〉 (63)

for the expression occurring on the right hand side of equa-
tion (60). The operator a+

m1,↑a
+
m2,↓a

+
m3,↑a

+
m4,↓ is antisym-

metric in m1, m3, while its coefficient is symmetric in the
same indices, thus the right hand side must be zero. This
completes the proof that

Ĥ1|ncl〉0 = 0, s = 1/2, (64)

i.e., the state |ncl〉0 is an eigenstate of both Ĥ0 and Ĥ for
s = 1/2 with the same eigenvalue as given in (41). This
provides an alternative proof of the result of Racah and
Talmi [13] within our framework that the ground state of
spin 1/2 particles interacting by an attractive δ-function
potential consists of independent pairs.

6 Average energies in cluster states

In this section it will be proven that the expectation values
of Ĥ (Eq. (10)) by the cluster states (33) are always the
same as the corresponding eigenvalues (52) of Ĥ0. Acting
with the operators B̂2

L (see Eqs. (10), (11)) on the cluster
states of Ĥ0 using the rules (91), (80) one gets three terms
(see Appendix C and A):

B̂2
L|ncl〉0 =

4nσ[L]
[l]

|ncl〉0 +
4nσ(σ − 1)

[l]
|αL〉

+
4n(n − 1)σ2

[l]
|βL〉, L : even, (65)

and zero for L odd. The vectors |αL〉 and |βL〉 are defined
as follows:

|αL〉 = Q̂+(n−1)
L∑

M=−L

(−1)MSm(Q̂+
L,MQ̂+

L,−MQ̂+σ−2
0,0 )|0〉

(66)
and

|βL〉 = Q̂+(n−2)
L∑

M=−L

(−1)M

× Sm(Q̂+
L,MQ̂+σ−1

0,0 )Sm(Q̂+
L,−MQ̂+σ−1

0,0 )|0〉. (67)

In the special case L = 0 the two vectors agree with |ncl〉0,
and for L = 2, 4, . . . , 2l it can be shown that |αL〉 and |βL〉
can be decomposed as

|αL〉 =
4[L]

2l + 3
|ncl〉0 + |α⊥

L 〉, L = 2, 4, . . . , 2l (68)

and

|βL〉 = − [L]([l] + [s])
l[s](2l + 3)

|ncl〉0 + |β⊥
L 〉, L = 2, 4, . . . , 2l

(69)
(see Appendix C), where |α⊥

L 〉 and |β⊥
L 〉 are possibly zero

vectors, but if not, they are eigenvectors of Ĉo with pos-
itive eigenvalues, and are automatically orthogonal to
|ncl〉0 (which is also an eigenvector of Ĉo but with zero
eigenvalue).

Using the above results the energy of the system de-
scribed by Ĥ averaged with |ncl〉0 is

〈ncl|Ĥ|ncl〉0
〈ncl|ncl〉0 =

〈ncl|Ĥ0|ncl〉0
〈ncl|ncl〉0 = εn, (70)
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where εn is given by (51) according to (50) . Furthermore,
we remind the reader that for l = 1, 2 the operators Ĥ
and Ĥ0 coincide.

Equation (70) shows that in the general case |ncl〉0
can be regarded as a trial wave function, i.e., the ground
state energy of the n-cluster state lies below εn given by
(51). Furthermore, if we make the decomposition, accord-
ing to (18), as Ĥ = Ĥ0 + Ĥ1 and if we consider Ĥ0 as an
unperturbed Hamiltonian with unperturbed ground state
|ncl〉0 then equation (70) shows that we do not obtain cor-
rection to the unperturbed energy εn to first order, cor-
rections are at least of second order, which can be small
because the off-diagonal matrix elements can be small.
This explains the numerical finding for l = 3, s = 3/2 and
N = 4 that the deviation of εn from the true ground state
energy is of the order 0.3% (see Sect. 3). The true ground
state, in general, is not a state, which is annihilated by the
Casimir operator of SO(2l + 1), even in the case n = 1,
but it has a small admixture of some other eigenstates of
Ĉo with positive eigenvalues.

7 Discussion

In preceding sections we have analyzed in detail the clus-
ter formation for s > 1/2 as a generalization for pairing
for s = 1/2 in the open shell model with attractive δ in-
teraction between the particles. We have constructed the
states |ncl〉0 = Q̂+n|0〉 and showed that in a certain subset
of shell parameters l, s these states are exact and in other
cases they are fairly good approximate ground states. We
expressed the cluster creation operator Q̂+ in terms of the
symmetrized product of the pair creation operator Q̂+

0,0 as
Q̂+ = Sm(Q̂+σ

0,0 ). It is interesting to note that the operator
Sm itself, which by definition symmetrizes with respect to
the angular momentum indices, can be interpreted as an
antisymmetrizer, which acts on spin indices. The intro-
duction of the symmetrizing operator is basic for s > 1/2
since this operator ensures that the spin function of the
cluster, written in terms of spatial and spin variables of
the particles, is the Slater determinant of (2s+1) linearly
independent one particle spin functions [12].

Let us assume that an optical trap producing a har-
monic oscillator potential is filled gradually with atoms
of spin s. Though it can be only of academic interest we
find it enlightening to look at the situation for small par-
ticle numbers. The first shell (specified by the harmonic
oscillator quantum number nho = 0) is completed when
the particle number is 2s + 1, i.e., one cluster is created
(l = 0, of course). The shells l = 1, 2, 3 appear first in
the harmonic oscillator shells nho = 1, 2, 3, respectively.
Concerning the spectrum there is a qualitative difference
between the cases l ≤ 2 and l > 2 since for the latter l
values Ĥ is no more equal to Ĥ0. This is demonstrated in
Figures 1 and 2. The regularity in the spectrum for l = 2,
s = 3/2 (Fig. 2) is obviously lost for l = 3, s = 1/2 (Fig. 1).
Note that in the Figures 1 and 2 the shifted eigenvalues

Fig. 1. The shifted energy levels E′ of the dimensionless
Hamilton operator as a function of the particle number N for
l = 3, s = 1/2. Individual energy levels are denoted by crosses
(+). The dashed line is the function (72).

Fig. 2. The shifted energy levels E′ of the dimensionless
Hamilton operator as a function of the particle number N for
l = 2, s = 3/2. Individual energy levels are denoted by crosses
(+). The dashed line is the function (72).

defined by

E′ = E +
Ns(2l + 1)

4
(71)

are depicted. This leads to the symmetry with respect to
the half filled shell as explained in Appendix D.

Shifting the energies of the ground and excited states
of Ĥ0 according to (71) the lowest shifted energies of Ĥ0

are on the curve

E′(N) =
N(2l + 1)(2s− 1)
8(2l + 3)(2s + 1)

[(2s + 1)(2l + 1) − N ] (72)

at the nth cluster particle number, i.e., if N = Nn, n =
0, 1, . . . , 2l + 1. The energy of the particles in the open
shell can be obtained from equations (24) and (71) as

E = E′g +
(
E(1) − g

s(2l + 1)
4

)
N. (73)
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For large l values the ground state energy can be estimated
by equation (70) which we consider one of our main re-
sults. The values l 	 1 can occur when also nho 	 1.
It has been shown by Bruun and Heiselberg [15] (using
semiclassical method valid in the case of large systems)
that the condition for the applicability of the single l-shell
model is satisfied when nho > 200 and l ≈ nho. For large
l values εn (see Eq. (51)) simplifies as

εn

l
= −n

2s + 1
4

(
1 +

n(2s − 1)
2l

+
4s − 1

2l
+ O(1/l)

)
.

(74)
Note that n(2s + 1) is just the particle number Nn in the
open shell. As long as Nn 
 l the energy per particle
in the multi cluster state is practically the same as for
s = 1/2 particles at even particle numbers calculated first
by Racah and Talmi [13]. The spectrum is expected to be
similar qualitatively to that appearing in Figure 1. When
the open shell is half filled, however, then n = l + O(1)
and the ground state energy gets a factor of (2s+1)/2 ≥ 1
according to equation (74). It is expected that the critical
temperature is increased by a similar factor. (At finite
temperature the gap becomes temperature dependent, of
course, and the details of the spectrum are smeared.)

The main technical problem in deriving values for the
approximate (or exact) cluster energies εn was relegated to
Appendix C. Here we applied a powerful projection tech-
nique in a non-orthonormal and linearly non-independent
basis. During this procedure it has turned out that the
ground state eigenvalue of Ĥ0 is non-degenerate.

The present work has been partially supported by the Hungar-
ian Scientific Research Fund under Grant Nos. OTKA T046129
and T038202.

Appendix A: The properties
of the symmetrizer Sm

Let us introduce the symmetrizer symbol Sm by the fol-
lowing properties: (i) Sm is linear for its argument, (ii) Sm

symmetrizes an operator-product a+
m1,ν1

. . . a+
mp,νp

of cre-
ation operators a+

mi,νi
, i = 1, . . . , p with respect to all mi

without changing the order of spin projections (ν1, . . . , νp)
including the combinatorical normalization. As an exam-
ple:

Sm(a+
0,3/2a

+
1,1/2a

+
0,−1/2) =

1
3
(
a+
0,3/2a

+
1,1/2a

+
0,−1/2

+a+
1,3/2a

+
0,1/2a

+
0,−1/2 + a+

0,3/2a
+
0,1/2a

+
1,−1/2

)
.

Very important special case is p = 2s+1. Writing down all
the terms in Sm(a+

m1,ν1
. . . a+

m2s+1,ν2s+1
) it turns out that it

must be antisymmetric in all spin indices (ν1, . . . , ν2s+1).
Therefore, by inspection we have

Sm(a+
m1,ν1

. . . a+
m2s+1,ν2s+1

) = εν1,...,ν2s+1

× Sm(a+
m1,s . . . a+

m2s+1,−s), (75)

where εν1,...,ν2s+1 is the antisymmetric tensor with the con-
vention εs,s−1,...,−s = 1. Further expansion is possible for
the combination

Sm(a+
m1,s . . . a+

m2s+1,−s) =
1

(2s + 1)!

×
∑

ν1

. . .
∑

ν2s+1

εν1,...,ν2s+1a
+
m1,ν1

. . . a+
m2s+1,ν2s+1

. (76)

Next, we enumerate some properties of Sm useful in the
following. If

B̂ =
∑

m,n,ν

fm,na+
m,νan,ν

Âα =
∑

m,n,ν

(−1)s−νg(α)
m,na+

m,νa+
n,−ν , α = 1, . . . , σ,

g(α)
m,n = g(α)

n,m (77)

where fm,n and g
(α)
m,n are numbers, then

Sm(Â1 . . . Âσ) =
2σσ!(−1)

σ(σ−1)
2

(2σ)!

∑

m1,...,m2σ
ν1,...,ν2σ

εν1,...,ν2σ

× g(1)
m1,m2

. . . g(σ)
m2σ−1,m2σ

a+
m1,ν1

a+
m2,ν2

. . . a+
m2σ,ν2σ

. (78)

This identity can be proven using equations (75)–(78) and

∑

ν1

. . .
∑

νσ

(−1)s−ν1 . . . (−1)s−νσ εν1,−ν1,...,νσ ,−νσ =

2σσ!(−1)
σ(σ−1)

2 . (79)

If conditions (77) hold then again from equations (75)–
(78) one can derive the identity

[
B̂, Sm(Â1 . . . Âσ)

]
= Sm([B̂, Â1 . . . Âσ]), (80)

where [. . .] denotes a commutator.

Appendix B: Proof of the identities (47)
and (48)

Let us introduce the spin dependent antisymmetric matrix
Ĝν,z by

Ĝν,z =
∑

m

(−1)l−ma+
m,νa+

−m,z. (81)

If we use (78) with Â1 = . . . = Âσ = Q̂+
0,0 we have

Sm(Q̂+σ
0,0) =

2σσ!(−1)
σ(σ−1)

2

(2σ)! ([l][s])
σ
2

∑

ν1,...,ν2σ

εν1,...,ν2σ

× Ĝν1,ν2Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ . (82)

If, for the expression on the left hand side of equation (47)
we use once again (78) with Â1 = Q̂+

L,M , Â2 = Q̂+
L,−M and
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with Â3 = . . . = Âσ = Q̂+
0,0 and perform the standard sum

over L and M we arrive to

2l∑

L=0

L∑

M=−L

(−1)MSm(Q̂+
L,MQ̂+

L,−MQ̂+σ−2
0,0 )

=
2σσ!(−1)

σ(σ−1)
2 [l]

(2σ)! ([l][s])
σ
2

∑

m1,n1

(−1)l−m1(−1)l−n1

×
∑

ν1,...,ν2σ

εν1,...,ν2σa+
m1,ν1

a+
n1,ν2

a+
−m1,ν3

a+
−n1,ν4

× Ĝν3,ν4Ĝν5,ν6 . . . Ĝν2σ−1,ν2σ . (83)

If now we change the order of a+
n1,ν2

a+
−m1,ν3

using anti-
commutativity we can get two more Ĝ factors. In the next
step if we change the second and third indices of the ε
tensor after comparison with (82) we arrive at the operator
identity equation (47).

In order to prove equation (48) we proceed as above.
Changing the order of two creation operator (and dividing
both sides with a common factor) it is left to prove that

1
[s]

∑

ν1,...,ν2σ
z1,...,z2σ

εν1,...,ν2σ Ĝν1,ν2Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ

×εz1,...,z2σĜz1,z2Ĝz3,z4 . . . Ĝz2σ−1,z2σ

=
∑

ν1,...,ν2σ
z1,...,z2σ

εν1,...,ν2σ Ĝν1,z1Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ

×εz1,...,z2σ Ĝν2,z2Ĝz3,z4 . . . Ĝz2σ−1,z2σ . (84)

By introducing the spin dependent matrix operator

F̂ν,z =
∑

ν2,...,ν2σ

εν,ν2...,ν2σ Ĝz,ν2Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ (85)

and the spin-scalar operator

F̂ =
∑

ν1,...,ν2σ

εν1,...,ν2σ Ĝν1,ν2Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ (86)

from (84) it is left to be proven that

1
2s + 1

F̂ 2 =
s∑

ν,z=−s

F̂ν,zF̂z,ν . (87)

Next, we show that

F̂ν,z =
δν,z

2s + 1
F̂ . (88)

If this is true then equations (87), (84) and correspond-
ingly (48) are also true.

Let us study first the ν �= z case in equation (85). In
that case among the indices (ν2, . . . , ν2σ) of the antisym-
metric tensor ε the index z should occur. Let it be the
index νi = z. This cannot be ν2, because Ĝz,z = 0. It
means that two different Ĝ has the same index z. How-
ever, in the indices ν2 and νi+1 (if the index z occur in

the first index of the second Ĝz,νi−1) or νi−1 (if the index
z occur in the second index of the second Ĝνi−1,z factor)
the product of two G factor is symmetric, while the anti-
symmetric tensor ε in the same indices is antisymmetric.
Summing over ν2 and νi+1 or νi−1 we get zero. It means,
that

F̂ν,z = 0, if ν �= z. (89)

Next, let us consider F̂ν,ν with ν fixed. Changing the order
of indices on the right hand side of (86) such that ν be
the first in the ε tensor and in the first Ĝ factor (using
antisymmetry of the Ĝ-s and ε) one gets

F̂ = (2s + 1)
∑

ν2,...,ν2σ

εν,ν2...,ν2σ Ĝν,ν2Ĝν3,ν4 . . . Ĝν2σ−1,ν2σ

= (2s + 1)F̂ν,ν , (90)

where we have used (85). Equations (89) and (90) together
give the operator identity (88), which completes the proof
of equation (48).

Appendix C: Decomposition of |αL〉 and |βL〉
Let us consider how |αL〉 or |βL〉 behaves on applying
Ĉo to these vectors (see Eqs. (66), (67)). Here we treat
the calculation for |βL〉. Exactly the same method can be
applied for |αL〉 with one minor difference, which will be
shown below.

It is easy to show that
[
B̂L1,M1 , Q̂

+
L2,M2

]
= 2
√

[L1][L2](−1)M1

×
2l∑

L=0
L:even

M∑

M=−L

√
[L](−1)M

(
L1 L2 L
M1 M2 −M

)

×
{

L1 L2 L
l l l

}
Q+

L,M (91)

with L2 even. In using equations (80) and (91) one obtains

Ĉo|βL〉 = 2[l](1 − δL,0)|βL〉 − 4[L]

×
2l∑

L1=0
L1:even

(
1
[l]

−
{

L l l
L1 l l

})
|βL1〉 (92)

with L even. In other words, the vector space V spanned
by the vectors {|βL〉|L = 0, 2, . . . , 2l} is invariant under
Ĉo. If we define matrix elements in V for an operator Ô,
for which V is an invariant vector space by

Ô|βL〉 =
∑

L′

′
OL′,L|βL′〉, (93)

where
∑′

L′ stands for
∑2l

L′=0,L′:even, the matrix elements
of Ĉo obtained from (92):

Ĉo|βL〉 ≡
∑

L′

′
CL′,L|βL′〉, (94)
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CL′,L = 2[l](1 − δL,0)δL′,L − 4[L]
(

1
[l]

−
{

L l l
L′ l l

})

= (1 − δL,0)(1 − δL′,0)

×
(

2[l]δL′,L − 4[L]
(

1
[l]

−
{

L l l
L′ l l

}))
(95)

for L, L′ even. The second equality follows from
{

L l l
0 l l

}
=
{

0 l l
L l l

}
=

1
[l]

(96)

for L even. Actually the same matrix elements occur in
vector space V ′ = {|αL〉|L = 0, 2, . . . , 2l}:

Ĉo|αL〉 ≡
∑

L′

′
CL′,L|αL′〉. (97)

Unfortunately, neither the vectors |αL〉, nor the vectors
|βL〉 for L = 0, 2, . . . , 2l are linearly independent. This
clearly follows from equations (47) and (48) if we apply
both sides to the vacuum and multiply from the left by an
appropriate power of Q̂+. However, even in the linearly
not independent (and correspondingly not orthonormal)
basis one can still calculate matrix elements of operator
products such as

(
Ô(1)Ô(2)

)

L′,L
=
∑

L′′

′
O

(1)
L′,L′′O

(2)
L′′,L (98)

provided V is an invariant vector space of Ô(1) and Ô(2),
and furthermore, the matrix elements for Ô(1) and Ô(2)

are fixed (This statement follows from (93) if Ô ≡ Ô(2)

and we act on both sides with Ô(1) from the left). If one
calculates matrix elements of the operator R̂

R̂ = Ĉ3
o − (8l + 6)Ĉ2

o + 8l(2l + 3)Ĉo (99)

by the well-known properties [18] of the Wigner 6j-
symbols it turns out that

R̂L′,L = 0. (100)

It also means that the operator Ĉo on V or V ′ fulfills

Ĉo

(
Ĉo − 4lÎ

)(
Ĉo − (4l + 6)Î

)
= 0, (101)

where Î is the identity operator.
If an operator Ô has the the minimal polynomial

0 =
(
Ô − λ1Î

)
. . .
(
Ô − λdÎ

)
(102)

with finite d then Ô admits the decomposition

Ô =
d∑

i=1

λiP̂i, (103)

where P̂i is a projector, i.e., P̂iP̂j = P̂iδi,j and

P̂i =
d∏

j=1
j �=i

Ô − λj Î

λi − λj
. (104)

From equation (101) it is clear that on V at most we have
d = 3, and the three eigenvalues of Ĉo are λ1 = 0, λ2 = 4l
and λ3 = (4l+6) respectively. Our main purpose is to cal-
culate the orthogonal projection of |βL〉 to Q̂+n|0〉 = |β0〉.
This latter vector is an eigenvector of Ĉo with eigenvalue
0, thus let us consider the projector of P̂1:

P̂1 =

(
Ĉo − 4lÎ

)(
Ĉo − (4l + 6)Î

)

4l(4l + 6)
. (105)

Taking matrix elements on both sides is easy. Straightfor-
ward calculation leads to
(
P̂1

)

L′,L
= δL,0δL′,0+

[L]
l(2l + 3)

(1−δL,0)(1−δL′,0). (106)

If we consider the decomposition

|βL〉 = P̂1|βL〉 + (Î − P̂1)|βL〉 (107)

the first term P̂1|βL〉 is an eigenvector of Ĉo with eigen-
value zero, the second term, if it is nonzero, belongs to the
subspace in which Ĉo has positive eigenvalues. Thus, the
two vectors on the right hand side of (107) are orthogonal
to each other. Most important is the first term. Knowing
the matrix elements of P̂1 it reads as

P̂1|βL〉 = δL,0|β0〉 +
[L](1 − δL,0)

l(2l + 3)

2l∑

L′=2
L′:even

|βL′〉. (108)

Equation (48) implies (by applying both sides to the vac-
uum and multiplying by Q̂+(n−2) from the left)

2l∑

L′=2
L′:even

|βL′〉 = − [l] + [s]
[s]

|β0〉. (109)

Putting equations (107)–(109) together we obtain the re-
sult (69).

To prove the corresponding result (68) for the decom-
position of |αL〉 we can proceed as above, but instead of
(109) we should use

2l∑

L′=2
L′:even

|αL′〉 = 2l|α0〉, (110)

which follows from the operator identity (47) if we apply
both sides to the vacuum and multiply by Q̂+(n−1) from
the left.

Appendix D: Particle-hole transformation

Let us consider the operator Ĉ (see Ref. [2]), which acts as

Ĉa+
m,νĈ−1 = (−1)l−m+s−νa−m,−ν,

Ĉam,νĈ−1 = −(−1)−l−m−s−νa+
−m,−ν . (111)
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These transformations preserve the anticommutation rela-
tions between the a+-s and a-s. The operator Ĉ connects
a state to an other one where particles (holes) are replaced
by holes (particles). By simple calculation one obtains

ĈB̂L,M Ĉ−1 = (−1)L+1B̂L,M + [s]
√

[l]δL,0δM,0

ĈB̂2
LĈ−1 = B̂2

L − (2[s]
√

[l]B̂0,0 − [s]2[l])δL,0. (112)

If the single-shell Hamiltonian has the multipol expansion
form

Ĥ = tN̂ +
2l∑

L=0

pLB̂2
L (113)

where t and the pL-s are some numbers, then

ĈĤĈ−1 = Ĥ − (t + p0[s])(2N̂ − Nt). (114)

Here Nt is

Nt = [l][s] = (2l + 1)(2s + 1). (115)

The Hamiltonian (10) belongs to the family (113). Now,
let us given an eigenstate of (113) with definite particle
number N : Ĥ |γ, N〉 = E(γ, N)|γ, N〉 (γ denotes here the
other quantum numbers). Then, there exists an other state
|γ, Nt−N〉 with particle number Nt−N connected by Ĉ as

|γ, Nt − N〉 = Ĉ−1|γ, N〉 (116)

which is also an eigenstate of (113) by equation (114) with
eigenvalue

E(γ, Nt − N) = E(γ, N) + (t + p0[s])(Nt − 2N). (117)

This property is quite general, does not depend on the
form of spin independent, rotational invariant interaction
and reflects the particle-hole symmetry. For instance in
case of equivalent electrons in atoms t and p0 can be ex-
pressed by the well-known radial integrals. By introducing

E′(γ, N) = E(γ, N) − (t + p0[s])N (118)

one obtains using (117)

E′(γ, Nt − N) = E′(γ, N). (119)

Note that by putting N = 0 one gets that the energy of
the completed shell is E(γ, Nt) = (t+p0[s])(2l+1)(2s+1).
In the special case (10) t = [l]/8 and p0 = −[l]/8 and (118)
leads to equation (72) and (119) explains the symmetry
of the shifted spectrum in Figures 1 and 2. One can easily
convince oneself that the eigenstates and the eigenvalues
of Ĥ and Ĥ0 coincide when N = Nt. Finally, we note that
an expression similar to (117) exists in the single j-shell
model (relevant in the nucleus), namely (t + p0[s]) is to
be replaced by p0 to get formally the relationship valid
there [20].

If the Hamiltonian H is considered (117) and (118)
need an obvious modification. Namely,

E(nr, γ, Nt − N) = E(nr, γ, N)

+
(
gt + E(1)(nr, l) + gp0[s]

)
(Nt − 2N). (120)

Furthermore, defining E ′(γ, N) by

E ′(γ, N) = E(nr, γ, N) −
(
gt + E(1)(nr, l) + gp0[s]

)
N,

(121)
it follows that

E ′(γ, Nt − N) = E ′(γ, N). (122)

Note that using equation (24) one gets gE′ = E ′, i.e., the
one-particle energies are canceled from the shifted spec-
trum of H. This shows the usefulness of dealing with the
shifted spectrum.
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